Inhibition of autoimmune diabetes in nonobese diabetic mice by transgenic restoration of H2-E MHC class II expression: additive, but unequal, involvement of multiple APC subtypes.

نویسندگان

  • E A Johnson
  • P Silveira
  • H D Chapman
  • E H Leiter
  • D V Serreze
چکیده

Transgenic restoration of normally absent H2-E MHC class II molecules on APC dominantly inhibits T cell-mediated autoimmune diabetes (IDDM) in nonobese diabetic (NOD) mice. We analyzed the minimal requirements for transgenic H2-E expression on APC subtypes (B lymphocytes vs macrophages/dendritic cells (DC)) to inhibit IDDM. This issue was addressed through the use of NOD stocks transgenically expressing high levels of H2-E and/or made genetically deficient in B lymphocytes in a series of genetic intercross and bone marrow/lymphocyte chimera experiments. Standard (H2-E(null)) NOD B lymphocytes exert a pathogenic function(s) necessary for IDDM. However, IDDM was inhibited in mixed chimeras where H2-E was solely expressed on all B lymphocytes. Interestingly, this resistance was abrogated when even a minority of standard NOD H2-E(null) B lymphocytes were also present. In contrast, in NOD chimeras where H2-E expression was solely limited to approximately half the macrophages/DC, an active immunoregulatory process was induced that inhibited IDDM. Introduction of a disrupted IL-4 gene into the NOD-H2-E transgenic stock demonstrated that induction of this Th2 cytokine does not represent the IDDM protective immunoregulatory process mediated by H2-E expression. In conclusion, high numbers of multiple subtypes of APC must express H2-E MHC class II molecules to additively inhibit IDDM in NOD mice. This raises a high threshold for success in future intervention protocols designed to inhibit IDDM by introduction of putatively protective MHC molecules into hemopoietic precursors of APC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Role of  Variation of Major Histocompatibility Complex Class II Expression on Nonobese Diabetic (NOD) Peripheral T Cell Response

The current paradigm of major histocompatibility complex (MHC) and disease association suggests that efficient binding of autoantigens by disease-associated MHC molecules leads to a T cell-mediated immune response and resultant autoimmune sequelae. The data presented below offer a different model for this association of MHC with autoimmune diabetes. We used several mouse lines expressing differ...

متن کامل

An interval tightly linked to but distinct from the H2 complex controls both overt diabetes (Idd16) and chronic experimental autoimmune thyroiditis (Ceat1) in nonobese diabetic mice.

The major histocompatibility complex (MHC) has long been associated with predisposition to several autoimmune diseases, including type 1 diabetes and autoimmune thyroiditis. In type 1 diabetes, a primary role has been assigned to class II genes, both in humans and in the nonobese diabetic (NOD) mouse model. However, an involvement of other tightly linked genes is strongly suspected. Here, throu...

متن کامل

IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes.

We have generated transgenic nonobese diabetic (NOD) mice expressing dominant negative mutant IFN-gamma receptors on pancreatic beta cells to investigate whether the direct effects of IFN-gamma on beta cells contribute to autoimmune diabetes. We have also quantitated by flow cytometry the rise in class I MHC on beta cells of NOD mice with increasing age and degree of islet inflammatory infiltra...

متن کامل

Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401.

The identification of class II binding peptide epitopes from autoimmune disease-related antigens is an essential step in the development of antigen-specific immune modulation therapy. In the case of type 1 diabetes, T cell and B cell reactivity to the autoantigen glutamic acid decarboxylase 65 (GAD65) is associated with disease development in humans and in nonobese diabetic (NOD) mice. In this ...

متن کامل

MHC class II molecules play a role in the selection of autoreactive class I-restricted CD8 T cells that are essential contributors to type 1 diabetes development in nonobese diabetic mice.

Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 167 4  شماره 

صفحات  -

تاریخ انتشار 2001